High-resolution magnetic resonance microscopy and diffusion tensor imaging to assess brain structural abnormalities in the murine mucopolysaccharidosis VII model.
نویسندگان
چکیده
High-resolution microscopic magnetic resonance imaging (μMRI) and diffusion tensor imaging (DTI) were performed to characterize brain structural abnormalities in a mouse model of mucopolysaccharidosis type VII (MPS VII). Microscopic magnetic resonance imaging demonstrated a decrease in the volume of anterior commissure and corpus callosum and a slight increase in the volume of the hippocampus in MPS VII versus wild-type mice. Diffusion tensor imaging indices were analyzed in gray and white matter. In vivo and ex vivo DTI demonstrated significantly reduced fractional anisotropy in the anterior commissure, corpus callosum, external capsule, and hippocampus in MPS VII versus control brains. Significantly increased mean diffusivity was also found in the anterior commissure and corpus callosum from ex vivo DTI. Significantly reduced linear anisotropy was observed from the hippocampus from in vivo DTI, whereas significantly decreased planar anisotropy and spherical anisotropy were observed in the external capsule from only ex vivo DTI. There were corresponding morphologic differences in the brains of MPS VII mice by hematoxylin and eosin staining. Luxol fast blue staining demonstrated less intense staining of the corpus callosum and external capsule; myelin abnormalities in the corpus callosum were also demonstrated quantitatively in toluidine blue-stained sections and confirmed by electron microscopy. These results demonstrate the potential for μMRI and DTI for quantitative assessment of brain pathology in murine models of brain diseases.
منابع مشابه
Brain Structural Changes Caused by Autism Spectrum Disorder Based on Volumetric Analysis of Magnetic Resonance Images: A Review Study
Background and purpose: Autism spectrum disorder (ASD) is a psychiatric disorder which occurs in early years of life and causes various individual and social problems. Early detection of autism would help in taking necessary precautions and preventing its adverse side effects. Methods & Materials: In this paper, we reviewed the articles that have investigated brain structural changes caused by...
متن کاملCLINICAL CORRELATIONS BETWEEN AUDITORY BRAIN STEM RESPONSE AND MAGNETIC RESONANCE IMAGING IN PATIENTS WITH DEFINITE MULTIPLE SCLEROSIS
In an attempt to assess objectively the integrity of the auditory pathways in 30 patients with definite multiple sclerosis (MS), an audiometric evaluation was performed and auditory brainstem responses (ABRs) were obtained. Stressing the auditory system by increasing the stimulation rate showed some enhancement in the identification of MS. 24 (RO%) patients had an abnormal ABR along with c...
متن کاملStructural Findings in the Brain MRI of Patients with Acute Carbon Monoxide Poisoning
Background: Carbon monoxide (CO) poisoning may lead to hypoxic/anoxic injury and eventually ischemic encephalopathy. Magnetic resonance imaging (MRI) has a well-recognized role in assessment of the severity of brain damage caused by CO poisoning. In this study, we aimed to present and analyze the structural abnormalities in the brain MRI and especially in diffusion weighted MRI (DWI) images in ...
متن کاملImproved Delineation of Short Cortical Association Fibers and Gray/White Matter Boundary Using Whole-Brain Three-Dimensional Diffusion Tensor Imaging at Submillimeter Spatial Resolution
Recent emergence of human connectome imaging has led to a high demand on angular and spatial resolutions for diffusion magnetic resonance imaging (MRI). While there have been significant growths in high angular resolution diffusion imaging, the improvement in spatial resolution is still limited due to a number of technical challenges, such as the low signal-to-noise ratio and high motion artifa...
متن کاملCMR-assessed aortic arch stiffness is associated with brain tissue integrity assessed by diffusion tensor imaging in patients with hypertension
Background Increased aortic stiffness may lead to insufficient flow wave dampening and subsequent transmission of excessive pulsatile energy towards end-organs such as the brain. It has been shown that CMR-assessed aortic stiffness may augment cerebral small vessel disease in patients with hypertension, as assessed by conventional structural magnetic resonance imaging (MRI). However, in additio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuropathology and experimental neurology
دوره 73 1 شماره
صفحات -
تاریخ انتشار 2014